Oleg Melnichenko

Senior Scientist

email: oleg (at) esr.org

https://orcid.org/0000-0003-1069-6286

Research focus: Mesoscale ocean currents, mesoscale air-sea interaction, dynamics of the upper ocean mixed layer, and satellite remote sensing of ocean salinity.

Dr. Oleg Melnichenko is a physical oceanographer with more than 20 years of experience. He began his career in oceanography while he was a student at the Leningrad Hydrometeorological Institute, Russia, where he participated in several field campaigns, including a hydrographic expedition to the Chukchi Sea in the Russia’s Far North. After obtaining his master’s degree in Physical Oceanography in 1987, he served as a meteorologist in the Soviet Union Air Force. He returned to Physical Oceanography in 1989 when he joined the Marine Hydrophysical Institute in Sevastopol, Ukraine, from which he received his PhD in 2005. For his dissertation, he focused on the problem of reconstructing ocean currents from noisy and irregular observations. The work involved analysis of various observational data such as drifter and current mooring observations on the Louisiana-Texas continental shelf, subsurface isobaric float trajectories in the California Current System, high-frequency radar velocity measurement in the Monterey Bay, and, closer to his home, drifter observations in the Black Sea. In 2007, Dr. Melnichenko moved to Hawaii to join the International Pacific Research Center (IPRC) of the University of Hawaii where he continued his oceanographic research, focusing on mesoscale variability of ocean currents. His primary research interests include studies of mesoscale ocean currents, mesoscale air-sea interaction, dynamics of the upper ocean mixed layer, and satellite remote sensing of ocean salinity. He serves as Principal Investigator on several NASA funded research projects and is a member of NASA’s Ocean Surface Topography Science Team (OSTST) and Ocean Salinity Science Team (OSST).

Dr. Oleg Melnichenko joined ESR as an Affiliate in April 2021.

Education:

M.Sc. (1987) Leningrad Hydrometeorological Institute, Leningrad, Russia (Phys. Oceanography)
Ph.D. (2005) Marine Hydrophysical Institute of the National Academy of Sciences of Ukraine, Sevastopol, Ukraine (Phys. Oceanography)

Publications

PUBLISHED

Yu, L., F.M. Bingham, T. Lee, E. Dinnat, S. Fournier, O. Melnichenko, and W. Tang, 2021: Revisiting the Global Patterns of Seasonal Cycle in Sea Surface Salinity, J. Geophys. Res., 126, e2020JC016789, doi: 10.1029/2020JC016789.

Melnichenko, O., P. Hacker, and V. Müller, 2021: Observations of Mesoscale Eddies in Satellite SSS and Inferred Eddy Salt Transport, Remote Sens., 13, 315, doi:10.3390/rs13020315.

Daling Li Yi, O. Melnichenko, P. Hacker, and J. Potemra, 2020: Remote sensing of sea surface salinity variability in the South China Sea, J. Geophys. Res., 125, e2020JC016827, doi:10.1029/2020JC016827.

Müller, V., and O. Melnichenko, 2020: Decadal Changes of Meridional Eddy Heat Transport in the Subpolar North Atlantic Derived From Satellite and In Situ Observations, J. Geophys. Res., 125, e2020JC016081, doi:10.1029/2020JC016081.

Vinogradova, N., T. Lee, J. Boutin, K. Drushka, S. Fournier, R. Sabia, D. Stammer, E. Bayler, N. Reul, A. Gordon, O. Melnichenko, L. Li, E. Hackert, M. Martin, N. Kolodziejczyk, A. Hasson, S. Brown, S. Misra, and E. Lindstrom, 2019: Satellite Salinity Observing System: Resent Discoveries and the Way Forward, Frontiers in Marine Science, 6:243, doi:10.3389/fmars.2019.00243.

Melnichenko, O., P. Hacker, F. Bingham, and T. Lee, 2019: Patterns of SSS variability in the eastern tropical Pacific: intra-seasonal to inter-annual time scales from seven years of NASA satellite data, Oceanography, 32(2), 20-29, doi:10.5670/oceanog.2019.208.

Kao, H.-Y., G.S.E. Lagerloef, T. Lee, O. Melnichenko., T. Meissner, and P. Hacker, 2018: Assessment of Aquarius Sea Surface Salinity, Remote Sensing, 10(9), 1341, doi:10.3390/rs/10091341.

Amores, A., S. Monserrat, O. Melnichenko, and N. Maximenko (2017), On the shape of sea level anomaly siglnal on periphery of mesoscale ocean eddies, Geophys. Res. Lett., 44(13), 6926-6932, doi:10.1002/2017GL073978.

Amores, A., O. Melnichenko, and N. Maximenko (2017), Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3D structure and transport with application to the salinity maximum, J. Geophys. Res. Oceans, 122(1), 23-41, doi:10.1002/2016JC012256.

Melnichenko, O., A. Amores, N. Maximenko, P. Hacker, and J. Potemra, 2017: Signature of mesoscale eddies in satellite sea surface salinity data, J. Geophys. Res. Oceans, 122(2), 1416-1424, doi:10.1002/2016JC012420.

Potemra, J., P. Hacker, O. Melnichenko, and N. Maximenko, 2016: Satellite estimate of freshwater exchange between the Indonesian Seas and the Indian Ocean via the Sunda Strait, J. Geophys. Res. Oceans, 121(7), 5098-5111, doi:10.1002/2015JC011618.

Melnichenko, O., P. Hacker, N. Maximenko, G. Lagerloef, and J. Potemra, 2016: Optimum interpolation analysis of Aquarius sea surface salinity, J. Geophys. Res. Oceans, 121, 602-616, doi:10.1002/2015JC011343.

Davis, A., E. Di Lorenzo, H. Luo, A. Belmadani, N.A. Maximenko, O. Melnichenko, and N. Schneider, 2014: Mechanisms for the emergence of ocean striations in the North Pacific, Geophys. Res. Lett., 41, 948-953.

Melnichenko, O., P. Hacker, N. Maximenko, G. Lagerloef, and J. Potemra, 2014: Spatial Optimal Interpolation of Aquarius Sea Surface Salinity: Algorithms and Implementation in the North Atlantic, J. Atmos. Oceanic Tech., doi:10.1175/JTECH-D-13-00241.1.

Belmadani, A., N.A. Maximenko, J.P. McCreary, R. Furue, O. Melnichenko, N. Schneider, E. Di Lorenzo, 2013: Linear wind-forced beta-plumes with application to the Hawaiian Lee Countercurrent, J. Phys. Oceanogr., 43, 2071-2094.

Melnichenko, O., N. Maximenko, N. Schneider, and H. Sasaki, 2010: Quasi-stationary striations in basin-scale oceanic circulation: Vorticity balance from observations and eddy-resolving model. Ocean Dynamics, 60(3), 653-666.

Maximenko, N., P.P. Niiler, M.H. Rio, O. Melnichenko, L. Centurioni, D. Chambers, V. Zlotnicki, and B. Galperin, 2009: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Tech., 26, 1910-1919.

Maximenko, N.A., O. Melnichenko, P.P. Niiler, and H. Sasaki, 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35, L08603, doi:10.1029/2008GL033267.

Ivanov, L.M., O.V. Melnichenko, C.A. Collins, V.N. Eremeev, and S.V. Motyzhev, 2007: Wind induced oscillator dynamics in the Black Sea revealed by Lagrangian drifters, Geophys. Res. Lett., 34, L13609, doi:10.1029/2007GL030263.

Chu, P.C., L.M. Ivanov, O.V. Melnichenko, and N. Wells, 2007: On long baroclinic Rossby waves in the Tropical North Atlantic observed from profiling floats. J. Geophys. Res., 112, C05032, doi: 10.1029/2006JC003698.

Chu, P.C., L.M. Ivanov and O.V. Melnichenko, 2005: Fall–Winter current reversals on the Texas-Louisiana continental shelf. J. Phys. Oceanogr., 35, 902-910.

Ivanov, L.M., and O.V. Melnichenko, 2005: Determination of Mesoscale Surface Currents in Shallow Water Regions According to the Data of High-Frequency Radar Measurements. Phys. Oceanogr., 15(2), 92–104, doi: 10.1007/s11110-005-0032-2.

Collins, C.A., L.M. Ivanov, O.V. Melnichenko, and N. Garfield, 2004: California Undercurrent variability and eddy transport estimated from RAFOS float observations. J. Geophys. Res. Vol. 109, No. C5, doi: 10.1029/2003JC002191.

Collins, C.A., L.M. Ivanov, and O.V. Melnichenko, 2003: Seasonal Variability of the California Undercurrent: Statistical Analysis Based on Trajectories of Floats with Neutral Buoyancy. Phys. Oceanogr., 13(3), 135-147, doi:10.1023/A:1025090801764.

Chu, P.C., L.M. Ivanov, L.H. Kantha, T.M. Margolina, O.V. Melnichenko, and Y. A. Poberezhny, 2003: Lagrangian predictability of high-resolution regional model: the special case of Gulf of Mexico. Non. Proc. Geophys., No 20, 1-20.

Chu, P.C., L.M. Ivanov, T.P. Korzhova, T.M. Margolina and O.V. Melnichenko, 2003: Analysis of sparse and noisy ocean current data using flow decomposition: I: Theory. II: Applications to Eulerian and Lagrangean data. J. Atmos. Oceanic Tech., Vol. 20, 478-512.

Chu, P.C., L.M. Ivanov, T.M. Margolina, and O.V. Melnichenko, 2002: Probabilistic stability of a simple atmospheric model to differently scales perturbations. J. Atmos. Sci., Vol. 59, No. 19, 2860-2873.

Chu, P.C., L.M. Ivanov, L. Kantha, O.V. Melnichenko, and Y.A. Poberezhny, 2002: Power decay law in model forecast skill. Geophys. Res. Let., Vol. 29, No 15, 38-1–38-4.

Ivanov, L.M., T.M. Margolina, and O.V. Melnichenko, 1999: Prediction and Management of Extreme Events Based on a Simple Probabilistic Model of the First-Passage Boundary. Physics and Chemistry of the Earth (and Solar System), 1 (2), 73–79.

Kirwan, A.D., L.M. Ivanov, and O.V. Melnichenko, 1994: Prediction of the Stochastic Behavior of Nonlinear Systems by Deterministic Models as a Classical Time-Passage Probabilistic Problem. Non. Proc. Geophys., No 1, 224-233.

Eremeev, V.N., A.D. Kirwan, L.M. Ivanov, S.V. Kochergin, O.V. Melnichenko, and R.R. Stanichnaja, 1992: Reconstruction of oceanic flow characteristics from Quasi-Lagrangian data. Part 2: Characteristics of the large-scale circulation in the Black Sea. J. Geophys. Res. Vol. 97. C6, 9743 – 9753.

Eremeev, V.N., L.M. Ivanov, S.V. Kochergin, and O.V. Melnichenko, 1992: Seasonal variability and types of currents in the upper layer of the Black Sea. Phys. Oceanogr., 3(3), 193-208, doi: 10.1007/BF02197068.

Gertman, I.F., V.N. Eremeev, L.M. Ivanov, S.V. Kochergin, and O.V. Melnichenko, 1991: Some types of surface currents in the Black Sea, DAN, Vol. 320(1), pp 199-203.

Eremeev, V.N., L.M. Ivanov, S.V. Kochergin, and O.V. Melnichenko, 1991: Modal decomposition of three-dimensional currents, DAN, Vol. 309(6), pp 1453-1456.