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Abstract. This paper extends a turbulence closure-like
model for stably stratified flows into a new dynamic domain
in which turbulence is generated by internal gravity waves
rather than mean shear. The model turbulent kinetic energy
(TKE, K) balance, its first equation, incorporates a term for
the energy transfer from internal waves to turbulence. This
energy source is in addition to the traditional shear produc-
tion. The second variable of the new two-equation model
is the turbulent enstrophy (�). Compared to the traditional
shear-only case, the�-equation is modified to account for the
effect of the waves on the turbulence time and space scales.
This modification is based on the assumption of a non-zero
constant flux Richardson number in the limit of vanishing
mean shear when turbulence is produced exclusively by in-
ternal waves. This paper is part 1 of a continuing theoretical
development. It accounts for mean shear- and internal wave-
driven mixing only in the two limits of mean shear and no
waves and waves but no mean shear, respectively.

The new model reproduces the wave-turbulence transition
analyzed by D’Asaro and Lien (2000b). At small energy
densityE of the internal wave field, the turbulent dissipa-
tion rate (ε) scales likeε∼E2. This is what is observed in the
deep sea. With increasingE, after the wave-turbulence tran-
sition has been passed, the scaling changes toε∼E1. This
is observed, for example, in the highly energetic tidal flow
near a sill in Knight Inlet. The new model further exhibits
a turbulent length scale proportional to the Ozmidov scale,
as observed in the ocean, and predicts the ratio between the
turbulent Thorpe and Ozmidov length scales well within the
range observed in the ocean.

Correspondence to:H. Peters
(hpeters@esr.org)

1 Introduction

1.1 Motivation and goal

Between strong turbulence in the surface and benthic bound-
ary layers and weak and to some degree intermittent turbu-
lence in the interior, the oceans harbor dynamically different
regimes of turbulent flows. The turbulent mixing in these
various regimes has been modeled in two distinctly different
theoretical approaches with no commonalities in theory and
little interaction between its proponents. On the one hand,
mixing in boundary layers and mean shear flows, such as, for
example, in tidal domains or in the Equatorial Undercurrent
(EUC), is commonly represented by turbulence closure mod-
els. These models have their root in the turbulence theory of
neutrally stratified flows and are completely ignorant of the
presence of internal waves. On the other hand, mixing in the
interior of the ocean is dominantly driven by internal gravity
waves, and the prevailing model of this mixing has its root in
nonlinear wave-wave interaction theory.

This paper describes a path toward reconciling the two dif-
ferent mixing theories in the sense of constructing a unified
closure-like model that encompasses both mean shear- and
wave-generated turbulence. Specifically, we present the first
part of a continuing theoretical development. We only treat
the two limits of (i) internal wave-driven mixing in the ab-
sence of mean shear and (ii) mean-shear driven mixing in
the absence of wave-generated turbulence. A second paper
on the simultaneous occurrence of wave- and mean shear-
generated mixing is in preparation.

It is our hope that a unified model of wave- and shear-
driven mixing can improve the performance of circulation
models. To characterize the current situation, we note that
it has long been recognized that numerical circulation mod-
els of geophysical flows with embedded turbulence closures
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have to be adjusted to account for wave-driven mixing in the
interior of the ocean or atmosphere under study. This is com-
monly done by imposing a constant “background diffusiv-
ity.” It seems typical rather than atypical that numerical sim-
ulations of Chesapeake Bay byLi et al. (2005) proved to be
sensitive to the imposed background diffusivity and insensi-
tive to details of the turbulence closure. A more sophisticated
approach than a background diffusivity is clearly needed to
account for turbulence in geophysical flows. This conclusion
is also supported by an examination of aK-ε closure applied
to the permanently stratified and strongly sheared tidal flow
of the Hudson River byPeters and Baumert(2007). They
were able to reproduce strong mixing associated with strong
shear but not weak mixing in weak shear.

This paper is motivated by one of the few publications
which bridge the worlds of wave-driven and shear-driven tur-
bulence models,D’Asaro and Lien(2000b), henceforth re-
ferred to as DL00. Examining the transition between internal
waves and turbulence in Lagrangian drifter measurements,
DL00 find some aspects of turbulence closures compatible
with their results and encourage the development of new clo-
sures that are more completely attuned to their findings. This
paper is an attempt to do so. The “wave-turbulence tran-
sition” described by DL00 provides the critical test for the
merit of our ideas. We show below that our new model is
constructed such that it exhibits the most important results of
DL00.

1.2 Basic dynamic considerations

In order to make it easier for the reader to follow our ap-
proach, the following provides a brief summary of those as-
pects of traditional turbulence closure and oceanic internal
wave-driven mixing on which our new development is based.

Ignoring convection, boundary forcing and surface wave
breaking for the sake of simplicity, mean shear provides the
dominant energy source of turbulence in boundary layers, en-
ergetic tidal and shear flows such as the EUC. This is the
domain of turbulence closure, an approach with roots in non-
geophysical hydrodynamics, engineering and in atmospheric
and oceanic science, pioneered byMellor and Yamada(1974,
1982) andRodi (1987). Based on the Reynolds decomposi-
tion into mean and turbulent flow components, turbulence
closure assumes that, possible buoyancy forcing aside, the
mean shear provides the entire energy source of the turbu-
lence. Specifically, the production of turbulent kinetic en-
ergy,P , varies with the square of mean shear,P∼S2. Inter-
nal wave forcing of turbulence or even the existence of waves
is not considered.

Ignoring double diffusion for the sake of simplicity, mix-
ing in the interior of the ocean is dominantly driven by inter-
nal inertia-gravity waves. Nonlinear wave-wave interaction
theory has been invoked byMcComas and M̈uller (1981) and
Henyey et al.(1986) to model the energy flux through the in-
ternal wave spectrum to small wavelengths, and thus to tur-

bulence. The energy flux̃P to short waves approximately
equals the energy flux through the turbulence cascade and
the turbulent dissipation rateε.

Gregg (1989) (henceforth G89; see alsoPolzin et al.,
1995) combined the internal wave interaction theories with
oceanic dissipation measurements and established the rela-
tionshipP̃∼ε quantitatively withP̃∼E2, whereE is the en-
ergy density of the wave field. Following G89 this relation-
ship corresponds tõP∼〈S4

10〉: P̃ , and henceε, varies with
the fourth power of the RMS internal wave shear at a vertical
scale of 10 m,S10. The difference in the scaling of the mean
shear turbulent kinetic energy (TKE) productionP∼S2 and
the wave production term̃P∼〈S4

10〉 is fundamental to our de-
velopment.

The following text outlines the flow physics behind the
key term P̃ . The oceanic internal wave field occupies a
broadband frequency-wavenumber spectrum which is aston-
ishingly similar throughout the deep sea. This observation
was synthesized in the Garrett and Munk (GM;1972, 1975)
oceanic internal wave model. The energy fluxP̃ to small
scales,P̃ , is funneled through a “saturated” or “compliant”
part of the vertical wavenumber shear spectrum of the wave
field with m−1 vertical wavenumber (m) dependence and
constant spectral “level.” This level is invariant under vari-
ations of the energy density of the internal wave field (E)
and P̃ such that we refer to such wave fields with̃P>0 as
“saturated.”

As shown, e.g., byGregg et al.(1993) and consistent
with the GM model, the overall vertical shear spectrum in
the interior ocean is approximately flat to a cyclic vertical
wavenumberm of about 0.1 m−1. The already mentioned
saturated wavenumber range begins atm>0.1 m−1, a phe-
nomenon similarly observed in the atmosphere (e.g.,Fritts,
1989; Fritts and Alexander, 2003). The high-m end of the
of the saturated band transitions into the turbulent inertial
subrange. A sketch of this vertical wavenumber spectrum of
shear is provided in Fig.1. It is approximately related to the
vertical energy spectrum by a multiplication by (2πm)2. The
energy spectrum is too “red” to readily reveal its properties
to the eye.

The nature of being saturated is what distinguishes the
broadband oceanic internal wave field from internal waves in
stably stratified laboratory flows. The laboratory necessarily
restricts the range of space and time scales of internal wave
fields and thus severely limits the range of possible wave-
wave interactions. Consequently,P̃ in a laboratory setup is
likely zero or insignificant. An example is the turbulence de-
cay experiment ofDickey and Mellor(1980), in which the
kinetic energy at first decays fast,∼t−1, as a consequence of
nonlinear turbulent interactions and later much more slowly
in a molecular viscous decay of non-turbulent, wave-like and
possibly vortical motions.

We refer to internal waves with the propertỹP=0 as “un-
saturated.” In the analyzes ofBaumert and Peters(2004)
(henceforth BP04) and inBaumert and Peters(2005) the
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transfer of energy from TKE to unsaturated waves,W in the
following, proved to be important for making closures con-
sistent with the turbulent length scales observed in the labo-
ratory. These papers didnot consider waves as a source of
TKE. In some laboratory experiments examined inBaumert
and Peters(2000) (henceforth BP00) and in BP04, turbulence
provides the energy source for weak internal waves. In con-
trast, the strong internal wave field of the ocean is dominantly
powered by the surface wind stress generating near-inertial
motions in the surface mixed layer and by interactions of the
barotropic tide with variable topography. The internal wave
energy propagates into and fills the world ocean where it is
transferred to turbulence and dissipated.

At this point we can more explicitly summarize the
wave-turbulence transition inD’Asaro and Lien(2000b) (or
DL00). At low internal wave energy densityE, the spec-
tral energy flux to turbulence,̃P , scales withE2 as in the
G89 model,P̃∼ε∼E2. Above a level ofE indicating the ac-
tual “wave-turbulence transition”, this relationship changes
to P̃∼E1. Our model outlined below replicates this transi-
tion.

1.3 Our take on turbulence closure and its extension
toward wave-driven mixing

Finally, we need to briefly address the idiosyncrasies of our
past and present handling of turbulence closures. We are
working with aK-� equation system based on previous pa-
pers,Baumert and Peters(2000, 2004, 2005) andBaumert
(2005a), henceforth referred to as BP00, BP04, BP05 and
B05a, respectively. Our primary turbulence variables are the
turbulent kinetic energy (TKE,K) and the enstrophy (�) of
the turbulence, the latter having the dimension of time−1.
The�-equation sets the space and time scales of the turbu-
lence, more specifically, of the energetic eddies.

In the above-mentioned series of studies our emphasis
has been on the proper growth, decay and steady state be-
havior for unbounded shear flows in constant mean shear
and constant stratification far from solid boundaries, and un-
der laboratory conditions. For this limit BP00 show that
two-equation closures using different variables in the length
scale-related equation, e.g.,�, ε or K, L as in theMellor
and Yamada(1982) closure, are mappable onto each other
and differ only in the coefficients of that equation. In this
limit, there is no inherent advantage of one variable over the
others. Among the many choices of a second state variable,
� is best in our view because� stays in close analogy to the
RMS vorticity as discussed byWilcox (1998), whereby, un-
der certain circumstances, vorticity is a conserved variable in
the Euler equations. Only our form of theK-� model repro-
duces the law of the wall with von Ḱarmán constant equal to
0.399≈0.4, which is the international standard value.

The turbulence model described herein extends into the
domain of internal wave-driven mixing. Hence the TKE bal-
ance has to incorporate the internal wave spectral energy flux

Fig. 1. Features of Eulerian oceanic power spectra of the vertical
shear of the horizontal velocity,8SS , as a function of the vertical
wavenumberm after D’Asaro and Lien(2000; their Fig. 3), log-
log plot. The GM-like internal wave band ranges fromm1 to mc,
followed by the saturated band withm−1 behavior and invariant
level. The turbulent inertial subrange and the final viscous drop
off reside betweenmb andmk , the latter being the inverse of the
Kolmogorov scale.

P̃ as an extra energy source term. The nature of TKE produc-
tion by mean shear ofP∼S2 and Gregg’s (1989)̃P∼〈S4

10〉

differ severely. And thus an internal wave-related energy
source can not simply be incorporated into the shear produc-
tion term in the TKE equation (as done, e.g., byCanuto et al.,
2001a). A further motivation for keepingP̃ as a separate
source term in theK-equation is the perspective of integrat-
ing an internal wave model providing̃P in parallel with mean
flow and closure equations.

After the comparatively simple and straightforward step
of adding P̃ to the TKE equation, we also have to ac-
count for the effect of internal waves on the space and time
scales of the turbulence, which means modifying the�-
equation. There is no previous guidance for this non-trivial
step. Rather than making assumptions directly for the space
or time scale, we base our modification of the enstrophy
balance on an assumption about the efficiency of mixing.
We assume that, as the mean shearS becomes small and
the mean-flow gradient Richardson number (Rg=N2/S2) be-
comes large, the flux Richardson numberRf approaches a
constant, non-zero value, an invariant of our model. The
assumption that limRg→∞(Rf )=R∞

f =constant is based on
oceanic observations of the misnamed “mixing efficiency”
0=Rf /(1−Rf ) in low mean-shear environments (Osborn,
1980; Oakey, 1982; Moum, 1990, 1996a). ConstantR∞

f al-
ready appeared in an empirically motivated turbulence model
of Schumann and Gerz(1995) and was used in the validation
of a conventionalK-ε closure byPeters and Baumert(2007).

The theoretical analysis below shows that our assumption
of a specific constantR∞

f atRg→∞ is sufficient to close the
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system ofK-� equations with respect to the internal waves
and to ensure the uniqueness of its physically relevant solu-
tions.

1.4 Outline of the development

This paper is organized as follows. A brief discussion of
turbulence regimes as function of the gradient Richardson
number continues this introduction and further characterizes
our approach (Sect.2). Therein we first review the cases of
neutral stratification (Sect.3) and stable stratification without
internal wave-driven turbulence (Sect.3.1). Thereafter we
switch to internal waves with a summary of the G89 model
of open ocean internal wave-induced turbulent dissipation
(Sect.3.2). As our model is to be compatible with laboratory
as well as oceanic conditions, we need to address nonlinear
and viscous energy losses of internal waves, too (Sect.3.3).
Only then we can present the TKE balance in the presence of
waves and mean shear (Sect.4).

Thereafter we limit the discussion to the case of vanishing
mean shear and explain how the assumption of a constant,
non-zero flux Richardson number leads to a modification of
the�-equation consistent with the wave-dominated dynam-
ics (Sect.5). We then show that the just-constructed model is
consistent with the wave-turbulence transition as analyzed by
D’Asaro and Lien(2000b) (Sect.6). That is, we discuss the
behavior of our two-equation model when the energy density
of the internal waves increases from conditions of smallE

observed in the deep sea to largeE observed, for example, in
tidal flows. The paper concludes with a summary and a brief
discussion.

2 Turbulence regimes

The mean-flow gradient Richardson number,

Rg = N2/S2 , (1)

the ratio of the buoyancy frequencyN and the vertical shear
of the mean horizontal velocityS is a most fundamental and
useful characteristic of stratified flows. Different ranges of
Rg correspond to different hydrodynamic regimes without a
saturated internal wave field. In stratified, spatially homoge-
neous shear layers in laboratory experiments, direct numer-
ical simulations and idealized theoretical considerations the
following ranges are found.

(a) Rg≤Ra
g=0: unstable and neutral stratification, convec-

tive and neutral turbulence, no internal waves.

(b) Ra
g<Rg<Rb

g=
1/4: neutral and stable stratification,

shear-dominated growing turbulence, coexistence of
turbulence and nonlinear internal waves.

(c) Rb
g<Rg<Rc

g=
1/2: stable stratification, wave-

dominated decaying turbulence, coexistence of
turbulence and internal waves.

(d) Rc
g<Rg: stable stratification, waves-only regime.

The usefulness of the concept of homogeneous shear lay-
ers is discussed in BP00 and BP04. They are approximated
in the shear flow experiments of the Van Atta group (e.g.,
Rohr et al., 1988). The numerical values forRa

g, Rb
g andRc

g

given above hold only for the asymptotic case of an infinite
Reynolds number (Re). FiniteRe result inRb

g=0.12 to 0.25
in the laboratory (Tjernstr̈om, 1993; Shih et al., 2000) and
in the atmosphere (see the review ofFoken, 2006). In this
concept the flow conditions are simple and controlled so that
the analyzes ofRichardson(1922), Miles (1961), Howard
(1961) andAbarbanel et al.(1984) concerning flow instabil-
ity and the existence of turbulence are fully applicable. The
preceding reflects “laboratory flow physics.”

Most of the ocean and atmosphere deviate qualitatively
from the preceding classification of flow regimes as turbu-
lence occurs even at very largeRg as a consequence of the
presence of saturated internal waves as already noted above.
Traditionally, turbulence closures have included a “critical”
Richardson number above which turbulence is suppressed.
This corresponds to laboratory conditions as classified above.
For example in the closures ofMellor and Yamada(1982)
andCanuto et al.(2001a), this suppression is implemented
through the stability functions of the respective closures with
Rc

g≈0.2 in variants of theMellor and Yamada(1982) closure
andRc

g in the range of 0.8 to 1 in the case ofCanuto et al.
(2001a).

Recent attempts to ameliorate these fundamental problems
do not seek the primary reason in the missing energy flux
from the saturated internal wave field into the TKE pool.
They are looking for other reasons. For stratified bound-
ary layers, which clearly differ from homogeneous layers
to which the criticalRg concept exclusively applies, a non-
gradient correction of the traditional buoyancy flux formu-
lation has been applied byZilitinkevich et al.(2007), which
leads to many new parameters.Sukoriansky et al.(2006),
Sukoriansky(2007) and Galperin et al.(2007) use a con-
struct of an advanced spectral model coupled with an alge-
braic length-scale prescription. Thus the non-trivial critical-
ity problem, where space and time scales exhibit non-trivial
behavior, is covered by their choice of the non-physical
length-scale relationship.

We follow a different path; we focus on the dynamics of
turbulent flows as symbolized by our introduction of the TKE
source termP̃ as a term of leading order. It is important
to realize that variations iñP are not related to mean shear
S. They are related to variations of the internal wave RMS
shear,S̃10, in the formP̃∼〈S4

10〉 as shown in G89. Below, we
outline a turbulence model that follows the aboveRg-based
characterization of flow regimes in the absence of saturated
internal waves while allowing for steady state turbulence at
anyRg>0 in the presence of saturated waves. In steady con-
ditions without saturated internal waves, the flow laminar-
izes aboveRc

g, and the critical Richardson number retains
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its meaning from the classical analyzes (Richardson, 1922;
Miles, 1961; Howard, 1961; Abarbanel et al., 1984). The
presence of a saturated internal wave field in oceans and the
atmosphere is a first-order process which modifies the clas-
sical view of flow instability but does not make it obsolete.

3 Neutral stratification (Rg=0)

In order to make our turbulence model transparent we first
discuss its most important properties in the simple case of
neutral stratification in this section and for stable stratifica-
tion in the absence of saturated waves in the following sec-
tion. This is the essence of BP04 but formulated inK-� for-
mat following B05a. For a horizontally homogeneous flow
with vanishing vertical mean-flow component, the governing
equations are

∂K

∂t
−

∂

∂z

(
νt

∂K

∂z

)
=νt

(
S2

− �2
)

and (2)

∂�

∂t
−

∂

∂z

(
νt

∂�

∂z

)
=

1

π

(
S2

2
− �2

)
(3)

where νt is the eddy viscosity, given by the Prandtl-
Kolmogorov relationships,

νt =
K/π

�
=

(K/π)2

ε
. (4)

S2 is square of mean vertical shear and

ε=π−1�K=νt�
2 (5)

is the turbulent dissipation rate.
Equations (2) and (3) follow the preference of BP04 and

B05a to avoid empirical parameters where possible and to
express them as integers, rational numbers or mathematical
entities, such as, e.g.,π . The diffusion terms on the left-hand
side of closure equations such as Eqs. (2) and (3) carry extra
parameters in many closures. The parameters of Eq. (3) can
be made explicit by writing it as

∂�

∂t
−

1

σ�

∂

∂z

(
νt

∂�

∂z

)
=

(
c1S

2
−c2�

2
)

. (6)

The choices of BP04 and B05a areσ�=1, c1=(2π)−1 and
c2=π−1.

The integral length and time scales of the energy-
containing turbulent eddies,L and τ , respectively, can be
expressed in terms ofK and� as follows:

L=
(K/π)3/2

ε
=

√
K/π

�
, (7)

τ=2
K

ε
=

2π

�
. (8)

The Eqs. (2, 3, 4, and5) differ only slightly from the tradi-
tional and well-acceptedK-ω equations byWilcox (1998).

3.1 Stable stratification, laboratory (0≤Rg<
1/2)

In layers far from the bottom or surface boundary the vertical
diffusion terms in Eqs. (2 and3) can be neglected. For this
case BP04 write the TKE balance as

dK

dt
= −〈w′u′

〉S − W −
1

ρ
g 〈w′ρ′

〉 − ε . (9)

= P − B − ε , (10)

Here,

P=νtS
2 (11)

is the shear production of TKE, and

B=B+W=2νtN
2 (12)

is the total buoyancy-related loss rate of TKE, which does
not directly depend on shear or Richardson number.W is
the energy transfer from TKE to internal waves, andB is the
common buoyancy flux,

B=µtN
2
= − µt

g

ρ0

dρ̄

dx3
. (13)

The eddy diffusivityµt is related toνt through the turbulent
Prandtl number functionσ ,

µt=νt/σ . (14)

Within BP04 we developed a generalized form of the turbu-
lent Prandtl numberσ as a function of the frequency ratio
N/�,

σ=
1/2

(
1 − N2/�2

)−1/2
. (15)

Even with stable stratification the enstrophy Eq. (3) remains
unchanged from the case ofN2=0 as it does not contain a
buoyancy-related term.

A state of structural equilibrium introduced in BP00
for homogeneous shear layers corresponds to exponential
growth, decay or steady state of TKE. BP04 show that struc-
tural equilibrium corresponds tod�/dt=0. With this, Eq. (3)
is converted to

�2
=

1/2S
2 (16)

such that Eq. (15) becomes

σ=
1/2
(
1 − 2Rg

)−1
. (17)

For structural equilibrium some algebra of Eqs. (1), (5, 10,
and12) results in

dK

dt
=2νtS

2 ( 1/4−Rg

)
. (18)

Equations (17 and 18) exhibit the properties discussed al-
ready in Sect.2. Steady state occurs atRg=

1/4, growing
turbulence atRg<

1/4, decaying turbulence forRg>
1/4. Fur-

ther, Eq. (17) shows that turbulence cannot exist at all for
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Rg>
1/2. At the thresholdRg=

1/2 TKE is converted into
wave energy (termW ). These results are well supported
by various laboratory measurements as discussed in BP00,
BP04 and BP05. For the proper interpretation of the pre-
ceding statement of “no waves atRg>

1/2” the reader is re-
minded that this section addresses laboratory conditions in
which there are no saturated waves.

We close this chapter by recalling an important result of
BP04 which is used later below:

L/LO=(2Rg)
3/4 , (19)

whereLO=ε1/2N−3/2 is the Ozmidov scale. Equation (19)
is valid in the case of structural equilibrium.

3.2 Gregg (1989): internal waves and dissipation

In preparation for introducing̃P into our turbulence model
we now review theGregg(1989) model of internal wave-
driven mixing. G89 assembled a range of dissipation mea-
surements from various locations in the ocean with simulta-
neous measurements of the vertical shear of the horizontal
velocity,S10. All these observations were taken with vertical
profilers. Shear was evaluated by integrating shear spectra to
m=1/10 m, that is by integrating the flat internal wave part
of the spectrum shown in Fig.1 to mc, to the beginning of
the saturated range. The nonlinear internal wave interaction
theories ofMcComas and M̈uller (1981) andHenyey et al.
(1986) relateE to P̃ as

P̃ ∼ N−2E2 . (20)

Noting thatE WKB-scales withN2 and invoking the GM
model following G89, Eq. (20) translates to

P̃ ∼ N2
〈S4

10〉 . (21)

The shear term has to be understood as an ensemble average
with the property〈S4

10〉=2〈S2
10〉

2 (G89).
G89 assumed that the observedε approximately equals̃P ,

P̃=ε + B ≈ ε , (22)

noting that for negligible mean flow shear,S2
�〈S2

10〉, the
buoyancy flux produced by the wave-driven mixing amounts
to only about 20% ofε (Oakey, 1982). G89 finds the wave-
induced dissipatioñε as

ε̃ = a1
〈N2

〉

N2
0

〈S4
10〉

S4
GM

, (23)

where angle brackets indicate ensemble averages as be-
fore. The constanta1 specifies the dissipation rate in-
duced by an internal wave field at the GM energy level
andN=N0, a1=7×10−10 m2 s−3. N0=5.2×10−3 s−1 is the
buoyancy frequency used in the WKB scaling in GM, and
S2

GM=1.96×10−5 s−2
〈N2

〉/N2
0 is the squared shear from

GM. CombiningN0 andSGM for N=N0 into a RMS wave
Richardson number leads toRGM

g =〈N2
〉/〈S2

GM 〉≈1.4.

3.3 Internal Wave Energy Balance

The following is a balance equation forE inspired by G89
but tailored to our concept by adding a term related to the
viscous dissipation of wave energy.

dE

dt
= X − c1E − c2E

2 (24)

= 5 + W − E/T , (25)

T = (c1 + c2E)−1 (26)

X = 5 + W (27)

Here,X is the energy flux into the internal wave field from
external sources. It consists of two parts:5 stands for the
energy input from wind and tides at low frequencies, andW

is the energy flux from TKE to waves introduced in BP04
and already mentioned above.T is the relaxation time con-
stant of the wave field. There are two damping terms,c1E

andc2E
2. The first, withc1∝νm2, describes the molecular

frictional damping of wavenumberm by molecular kinematic
viscosityν. A wave with 10 m vertical wavelength, for ex-
ample, has a long molecular life time of about one month.
The second term,c2E

2, is related to the nonlinear energy
transfers to largem, P̃ . Based on many observations, G89
report thatc2≈6.4 d−1 [E]−1

=7.4×10−5 m−2 s1. Here [E]
stands for the units ofE, which are m2 s−2 in the SI system.

With respect to the TKE production by internal wave shear
and breaking,

P̃=c2E
2 , (28)

we introduce an internal wave saturation indexfs through

fs=
P̃

X
=c2

E2

X
(29)

with the property

0 ≤ fs ≤ 1 . (30)

In steady state and for large energy inputX, E is sufficiently
large so that the linear term in Eq. (24) can be neglected.
Then

P̃ ≈ X ≈ c2E
2

≈ 5 + W , (31)

and hencefs≈1.
G89 and our treatment correspond to the properties of

GM-like open ocean internal waves. Wave fields with differ-
ent spectra and a different spectral energy flux, such as those
on the continental shelf analyzed byMacKinnon and Gregg
(2003b), are beyond the scope of our turbulence model.

4 TKE balance with waves

We now recall the TKE balance Eqs. (10 and 12), add P̃

using Eqs. (27, 28, 29) and obtain
dK
dt

= P + ∼ P − (B + W) − ε

= P + fs(5 + W) − (B + W) − ε

= P + fs5 + (fs − 1)W − B − ε.

(32)
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To perform practical calculations with Eq. (32) it is neces-
sary to use the dynamic equation forE, Eqs. (24) and (29) to
computefs , or to at least have an estimate offs .

In the laboratory there typically are no external energy
sources for internal waves,5=0. Observation times are usu-
ally short and the spatial extent of experiments is limited
such that saturated waves cannot form. Hence, according to
Eqs. (25) and (29), we expectfs≈0. In the ocean we expect
strong internal wave forcing,5>0. There is no time limit
preventing the establishment of a saturated wave field, and
thus we expectfs→1.

The casefs=0 transforms Eq. (32) back into the form
Eq. (12), which expresses laboratory flow conditions. The
casefs=1 leads to

dK

dt
=P + 5 − B − ε , (33)

where the termW no longer appears. In mathematical terms
the steady state of purely wave-generated turbulence is given
by dK/dt=0 andP=0, such that

5=B + ε . (34)

The external energy forcing of the internal wave field is trans-
ferred spectrally to the turbulence and is balanced by the tur-
bulent buoyancy flux and dissipation rate.

5 Enstrophy balance with waves

Above, we have modified the TKE balance by adding an ex-
tra energy source term. This is a straightforward procedure as
such energy source terms are additive quantities. Modifying
the enstrophy balance to account for the effects of saturated
internal waves is less obvious. This task is done herein only
for the case of vanishing mean shear, while the general case
is the subject of a future publication.

To begin with, we show that the enstrophy balance does
indeed have to be changed in the presence of waves. For
vanishing mean-flow shear,S=0, the state of structural equi-
librium of Eq. (3), i.e. the cased�/dt=0, has only the trivial
solution�=0. In order to avoid degenerate and non-physical
solutions like this, we modify Eq. (3) formally as follows,

∂�

∂t
−

∂

∂z

(
νt

∂�

∂z

)
=

1

π

(
�̃2

− �2
)

, (35)

where�̃ is an unknown which we have to determine.1.
Considering the role of shear in the� balance one might

speculate that̃�2 should be replaced by the RMS wave shear,
say, byS10. But that turned out to be wrong as it neglects
higher-order contributions of the nonlinear wave field to the

1In the general case of non-zero mean shear,�̃ is required to
abide by the limiting condition lim5→0 �̃(5, S)=

√
S2/2 so that

the case of the absence of saturated waves,P̃=0, can be recovered.

enstrophy balance of turbulence. These contributions are dif-
ficult to quantify in consideration ofMcComas and M̈uller
(1981) and Henyey et al.(1986). We therefore proceeded
along a path as follows. We determine�̃ for P̃>0, S=0,
N2>0 by invoking the mixing efficiency0 as noted in the
introduction to this paper.0 is defined as

0=
B

ε
. (36)

0 was first estimated from microstructure measurements by
Oakey(1982) with a result of0≈0.2 amid scatter and with
substantial systematic uncertainty. A constant value of 0.2
has since been used in many publications. It is important to
note that0=constant can hold at most for largeRg atN2>0,
that is in wave-dominated mixing. More generally,N2

→0,
and thusRg→0, imply B→0 and hence0→0. Systematic
variations of0 have been associated with the age of turbu-
lent overturns byWijesekera and Dillon(1997). In assum-
ing 0=0̃=0.2 in wave-driven mixing herein, we implicitly
assume that we are averaging over an ensemble of mixing
events with similar evolution in a uniform wave field as ex-
pressed in the GM model.

We now rewrite Eq. (36) for the waves-only case using
Eq. (13, 14, and15) as follows:

B = 0̃ ε=µt N2
=

νt

σ
N2 (37)

= 2νt

(
1 −

N2

�̃2

)
N2. (38)

Based on Eqs. (5) and (4), we replaceε asε=�̃K/π andνt

asνt=K̃/(π�̃). After a little algebra we find

0̃
�̃2

N2
=2

(
1 −

N2

�̃2

)
. (39)

With the abbreviationη=�̃/N this relationship is equivalent
to

0̃η4
− 2η2

+ 2=0 . (40)

This equation has four solutions. Two of them are nega-
tive and can thus immediately be excluded. The smaller of
the two positive solutions is the physically correct one. For
0̃=0.2 it is given by

η=

√(
1 ±

√
1 − 20̃

)
/0̃ = 1.06. (41)

For asymptotically small mean shear this value ofη leads to
values of the�-to-N ratio, theL-to-LO ratio and the turbu-
lent Prandtl number, given below in Eqs. (42–44). Along the
way we invoke Eq. (7) to obtain the turbulent length scale
L, and Eq. (5) to eliminateK in favor of ε and the Ozmidov
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scale,LO=ε1/2N−3/2.

�̃/N = 1.06 > 1 , (42)

L/LO = 0.91 < 1 , (43)

σ =

1/2

1 − N2/�̃2
= 4.44. (44)

Hence, the turbulent enstrophy of the waves-only case ap-
proximately equals the buoyancy frequency, staying just
above it in the turbulent, rather than wave domain, and the
turbulent length scale approximately equals the Ozmidov
scale. It is well known that the Ozmidov scale approxi-
mately equals turbulent overturning scales in the low-mean
shear open ocean thermocline. Results byCrawford(1986)
can be reinterpreted asLth/LO=1.5±0.4. These confidence
bounds include the result ofDillon (1982), Lth/LO=1.25.
Based on laboratory data BP04 linkLth to the modelL
as Lth=2L. With this, our model indicatesLth/LO≈1.8,
which is well-compatible with the oceanic observations.

Above, the generalized Prandtl numberσ is given only for
reasons of completeness. Due to the absence of shear it does
not describe the ratio between momentum and scalar fluxes
and may be characterized as wave-degenerate.

6 The wave-turbulence transition

6.1 Turbulent and wave energy, and the WT transition
in DL00

D’Asaro and Lien(2000b) analyze observations of internal
waves and turbulence in regimes of varying total energy den-
sity from the low-energy open ocean thermocline to highly
energetic flows in fjords. They examine velocity spectra and
turbulent dissipation as a function of energy levels varying
from below to above the “wave-turbulence (WT) transition”.
After a summary of DL00, further below, we show how our
model replicates the WT transition.

The core of D’Asaro and Lien (2000b) is based on
measurements of the vertical velocity (w) with Lagrangian
drifters (D’Asaro and Lien, 2000a). Lagrangian frequency
spectra ofw, 8w, extend from wave motions to turbulent
motions as shown schematically in Fig.2. Following DL00,
waves reside at frequenciesf ≤ω≤N , wheref is the Cori-
olis parameter andω is frequency. The turbulence resides
at ω≥N . As the level of8w increases in the internal wave
band, so does its level in the turbulent band. Fig.2 further
sketches out that8w drops by1WT at ω=N upon the tran-
sition from the wave regime into the turbulence regime. With
increasing level of8w, 1WT becomes smaller,1WT =0 indi-
cating that the wave-turbulence transition threshold has been
reached. With further increase of the spectral energy level
1WT remains 0 and turbulence now dominates the total ver-
tical velocity variance.

With reference to Fig.2, we define the wave-, turbulent
and total vertical velocity variances as

〈w̃2
〉 =

∫ N

f

8w(ω)dω , (45)

〈w′ 2
〉 =

∫
∞

N

8w(ω)dω , (46)

〈w2
〉 = 〈w̃2

〉 + 〈w′ 2
〉 . (47)

Angled brackets indicate ensemble averages as before. In
this notation the changing composition of the total energy
between waves and turbulence is expressed as〈w̃2

〉 > 〈w′ 2
〉

below the WT transition and〈w̃2
〉 < 〈w′ 2

〉 above.
Perhaps more important than the changing composition of

〈w2
〉 into its turbulent and wave parts is the corresponding

change in the relationship between total energy and the spec-
tral energy fluxP̃ . DL00 show that, at small〈w2

〉, P̃ scales
with the second power of〈w2

〉, P̃∼〈w2
〉
2. At large 〈w2

〉

above the WT transition,̃P scales with the first power of
〈w2

〉 , P̃∼〈w2
〉
1. We repeat that increasing wave energyE,

and thus increasing〈w2
〉 according to Fig.2, implies increas-

ing spectral energy flux̃P according to Eq. (28) and thus in-
creasingε.

The vertical velocity variance〈w2
〉 and its turbulent and

wave parts are used in DL00 and herein as proxies for the
total wave energy,E, and for the TKE,K. The total energy
density per unit mass of the internal wave field,E, is given
by (Gill , 1982, p. 140)

E=
1/2

[
〈ũ2

〉 + 〈ṽ2
〉 + 〈w̃2

〉 + N2
〈ζ̃ 2

〉

]
. (48)

Here,ζ̃ is the wave-related vertical displacement of an isopy-
cnal, and〈ũ2

〉 and〈ṽ2
〉 are the horizontal wave velocity vari-

ances. In the sum of wave energy and TKE,

E=E + K , (49)

the relationship betweenE and〈w2
〉 can be explored by writ-

ing

〈w2
〉=〈w̃2

〉 + 〈w′2
〉 ≈ q

E

2
+

2

3
K . (50)

We assume isotropy for the turbulent part and equipartition
between potential and kinetic energy for the wave part. The
variableq represents the ratio of vertical kinetic energy toE,
0<q<1. DL00 show thatq is almost identical with the ratio
f/N . Based on the GM reference valueN0=5.2×10−3 s−1,
corresponding to a buoyancy period of about 20 min, we con-
clude thatq can rarely exceed the value 0.03. Further below
we useq=0.02 for a latitude of 47◦.

6.2 The WT transition in our model: general solution

We now examine how our model behaves as a function of
varying internal wave and turbulent energy density. Com-
mensurate with the idiosyncrasies of DL00, energy is largely
discussed in terms of vertical velocity variance.
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For the wave-only case the general relationship Eq. (5) is
transformed with Eq. (41) to

ε=π−1�K=π−1ηKN ≈ 0.34KN . (51)

Further, we conclude from Eqs. (25) and (31) for the steady
state, wave-only case that̃P≈5≈c2E

2, and with Eqs. (34
and36) we obtain

ε=c2(1 + 0̃)−1E2 . (52)

Equating (51) and (52) produces

K=
π

η

c2

1 + 0̃

E2

N
≈ 2.47c2

E2

N
, (53)

which we insert in Eq. (50) to obtain

〈w2
〉 ≈ q

E

2
+ 1.65c2

E2

N
. (54)

This equation is solved by

E =
q

4

√
1 + 16q−2〈w2〉1.65c2/N − 1

1.65c2/N
. (55)

Inserting Eq. (55) into (52) results in a general relationship
betweenε, N , q, and〈w2

〉. It contains no further unknowns:

ε=0.83c2

(
q

4

√
1 + 16q−2〈w2〉1.65c2/N − 1

1.65c2/N

)2

. (56)

6.3 Asymptotically large and small energy density

Before studying this general case we examine the ratio
〈w̃2

〉/〈w2
〉, that is, the relative share of the waves of the to-

tal vertical velocity variance. We therefore take〈w2
〉 from

Eq. (54) and find

qE

2〈w2〉
=

qN

qN + 1.65c2E
. (57)

We see that, when the wave energy levelE increases abso-
lutely, it decreases relative to the total vertical velocity vari-
ance. In other words, the TKE share of〈w2

〉 increases more
strongly thanE and becomes dominating for very largeE.
This is independent ofq. We reiterate that for the case under
consideration largeE implies large5 and largeP̃ .

The asymptotic cases of very small and very large en-
ergy densities and the associated energy flux5 are espe-
cially interesting. In the asymptotic limit of5→∞ we ob-
tain 〈w2

〉→
2/3K, and, with Eq. (51),

ε ≈ 0.51N〈w2
〉 . (58)

For very large total energy density and corresponding large
energy flux into and out of the internal wave field the turbu-
lent dissipation rate scales with the first power of the vertical
velocity variance.

The opposite asymptotic case is that of vanishingly small
energy flux,5→0, such that alsoE→0. Due to Eq. (57)

Fig. 2. Sketch of Lagrangian frequency spectra of vertical velocity
from D’Asaro and Lien(2000; their Fig. 2), log-log plot. Waves
span frequencies fromf to N with ω0 behavior. Turbulence re-
sides atω>N with approximateω−2 shape. With increasing en-
ergy, cases A to D, the wave-turbulence transition is reached when
the level of turbulence reaches that of the waves atω=N , 1wT =0,
case C.

it follows that 〈w̃2
〉/〈w2

〉→1. In other words we have
E→2〈w2

〉/q, which we insert into Eq. (52) to find

ε=3.33
c2

q2
〈w2

〉
2 . (59)

For very small total energy density and correspondingly
small energy flux the turbulent dissipation rate scales with the
second power of the vertical velocity variance. Our model
thus qualitatively reproduces the energy and energy flux be-
havior of the WT transition as analyzed by DL00.

The transition from the low-energy to the high-energy state
is continuous as shown in Fig.3, which depicts the leading
powerp of ε in a power-law relationship with〈w2

〉. The
definition ofp is

p=
〈w2

〉

ε
×

dε

d〈w2〉
, (60)

whereε has been calculated from the general relationship
Eq. (56). Note howp smoothly varies from 2 at small〈w2

〉

to 1 at large〈w2
〉. The dashed vertical line indicates the lo-

cation of the WT transition threshold as discussed further be-
low.

6.4 The transition threshold

As mentioned above and illustrated in Fig.2, DL00 identify
the threshold for the wave-turbulence regime transition with
the lowest energy level at which1WT =0. In other words,
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Fig. 3. Variation of the leading powerp of dissipation rate as
function of the total vertical velocity variance of waves and tur-
bulence combined,ε∼〈w2

〉
p. As the energy density of waves and

turbulence increases the behavior ofε changes fromε∼〈w2
〉
2 to

ε∼〈w2
〉
1.

the transition is reached when8w(ω) becomes continuous at
ω=N . We exploit this condition in the following with some
algebra.

The internal wave part of the total spectrum8w, 8iw
w , is

approximately white so that, withf �N , we have

〈w̃2
〉=

∫ N

f

8w(ω)dω ≈ N×8iw
w . (61)

In the turbulent range,ω>N , 8w(ω) is approximately

8t
w(ω) ≈ β

ε

ω2
(62)

following DL00. The Kolmogorov constant isβ≈1.8. Upon
integration of Eq. (46) the turbulent vertical velocity variance
becomes

〈w′ 2
〉 ≈ β

ε

N
. (63)

The threshold condition of DL00,8iw
w (N)=8t

w(N), can be
combined with Eqs. (61), (62) and (63) to obtain

〈w′ 2
〉thr ≈ 〈w̃2

〉thr . (64)

Indices “thr” are used to indicate conditions valid only at the
WT transition threshold. We further recall Eq. (50) and com-
bine it with Eq. (63) and the threshold condition Eq. (64) as
〈w2

〉thr=2βεthr/N , or

εthr=(2β)−1N〈w2
〉thr ≈ 0.28N〈w2

〉thr . (65)
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Fig. 4. Dissipation rate as a function of the vertical velocity vari-
ance in the general case Eq. (56) with N=N0=5.2×10−3 s−1 and
q=0.02. The coefficientc2=7.4×10−5 m−2 s1 was chosen follow-
ing G89. The dashed lines marks the location of the WT threshold
for these values.

We can quantifyεthr and 〈w2
〉thr by combining Eq. (65)

with the general solution Eq. (56),

0.28N〈w2
〉thr=0.83c2(q/4)2

×(√
1 + 16q−2 〈w2〉thr1.65c2/N − 1

)2
×

(1.65c2/N)−2 .

(66)

For N=N0 the solution is εthr=1.8×10−5 m2 s−3 and
〈w2

〉thr=0.0125 m2 s−1. This is consistent with DL00 who
find εthr=3×10−5 m2 s−3 for a standard deep-water GM
case. These results are depicted in Fig.4, where the gen-
eral solution Eq. (56) is plotted together with the threshold
valuesεthr and〈w2

〉thr. The asymptotic results Eqs. (58) and
(59) can be summarized as follows, whereq=0.02.

ε=

0.62〈w2
〉
2 , E � Ethr,

0.51N〈w2
〉, E � Ethr.

(67)

According to Eq. (52), Ethr=

√
(1+0̃)εthr/c2, which results

in Ethr≈0.54 m2 s−2 for N=N0.
It may be of interest to note the value of the eddy

diffusivity µt at the WT transition threshold. With the
generalµt=0̃εN−2 and N=N0 we find a threshold level
of µt, thr=1.3×10−1 m2 s−1, much larger than typical deep
ocean diffusivities of the order of 10−5 m2 s−1 (G89).

6.5 The high-energy regime

The high-energy, linear behavior ofε vs. 〈w2
〉 can be de-

scribed following DL00 asε=CN〈w2
〉, whereC is expected
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to be a universal constant. DL00 findC in the range of 0.3
to 0.6 and associate the uncertainty primarily with the un-
certainty of Kolmogorov constantβ. This can be compared
with Weinstock(1981) who suggestsC in the range of 0.4
to 0.5 for stratospheric problems whileMoum (1996b) finds
C=0.73±0.06 in the oceanic thermocline. Our model yields
C=0.51 as shown above and thus corresponds well to the re-
sults of DL00,Weinstock(1981) andMoum(1996b).

7 Summary and conclusions

In this paper, we develop a new two-equation model of strat-
ified turbulence which covers the limits of shear-driven mix-
ing without saturated waves, and internal wave-driven mix-
ing without mean shear. The equation for TKE carries an
extra source term,̃P , for the energy flux from saturated in-
ternal waves to turbulence,
dK

dt
=P+P̃−B−ε . (68)

Saturated waves are defined herein as producing a signifi-
cant P̃ , which is often not the case under laboratory con-
ditions. Equations (4, 11, 12, 13, 14, 15, 32) specify the
terms of Eq. (68). The equation for the turbulent enstrophy
�, does not carry a buoyancy-related term in the mean-shear-
only case (i.e.P̃=0),

d�

dt
=

1

π

(
S2

2
−�2

)
. (69)

In the waves-only limit with vanishing mean shear,S=0, the
enstrophy equation becomes

d�

dt
=

1

π

(
η2N2

−�2
)

, (70)

whereη=1.06 from Eq. (42).
The simple two-equation model of Eq. (68) combined with

Eq. (70) in the waves-only, no mean shear case provides the
turbulence with a frequency scale�∼N and with a length
scale∼LO in agreement with oceanic observations. The
model also exhibits the most important characteristics of the
wave-turbulence transition as described byD’Asaro and Lien
(2000b), ε∼E2 in the low-energy limit andε∼E1 in the high
energy limit. It is consistent with the quantitative location
of the transition threshold in terms ofε and vertical velocity
variance in the deep ocean case. Our model is also quantita-
tively consistent with the behavior of the dissipation – energy
relationship in the high-energy case,ε=C〈w〉

2.
This and our previous studies present deliberately simple

models aimed at physical and mathematical transparency and
realism. They do not aim at optimally fitting model parame-
ters. Thus, we do not find it worrisome, for example, that the
neutral turbulent Prandtl number of our model, 0.5 following
Eq. (15), is at low end of observed values. Because of the
well known closure problem, all turbulence closures neces-
sarily embody assumptions not directly based on first princi-
ples. Our novel model is no exception. We invite discussions

of the physical and mathematical merits of our model includ-
ing the assumptions on which it is based.

It is important to point out that we did not deduce our re-
sults from direct observations but rather derived them from a
theory of stratified turbulence and internal waves which uses
the asymptotic mixing efficiencỹ0=0.2 and the Kolmogorov
constantβ as the only empirical parameters.2 We had the
intuition that Eq. (69) would retain its structure in the waves-
only case and then assumed that the mixing efficiency would
stay finite and constant in the limit of vanishing mean shear.
These two assumptions proved to be sufficient to work out
our new model.

In producing the correct space and time scales for oceanic
wave-driven mixing and in replicating the wave-turbulence
transition of DL00 our model appears promising. Naturally,
it has limitations, too, limitations beyond treating only the
limits of no mean shear and no saturated waves. In the case
of S=0 it addresses the generation of mixing by a deep-ocean,
GM-like internal wave field. Other cases, such as mixing on
the comparatively shallow continental shelf are beyond its
scope for now. In order to make the new model useful in
a practical, rather than theoretical, sense, the coexistence of
waves and mean shear has to be allowed for. Work on this
difficult scenario has begun.
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